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ABSTRACT

A method for calculating an approximate value of the detection limit for

measurements of ionizing radiation is presented. The method can be applied
when the uncertainty of the indication, corresponding to the detection limit, is
given as an explicit function of the indication. Then also the detection limit can
be calculated explicitly, which means that the iteration procedure for its
calculation can be avoided. The advantage of the method becomes apparent
when the iteration process for calculating the detection limit is difficult to
apply.

INTRODUCTION

According to the standard ISO 11929 (ISO 2010) the decision threshold and
the detection limit are expressed in terms of the value of the measurand and
its uncertainty. Whereas the decision threshold is expressed by the
uncertainty of the measured value if the conventional value of the measurand
is zero, the detection limit is calculated from the uncertainty of the measurand
having the value of the detection limit, i.e., the value of the measurand that
can be recognized with a predefined probability. It is easy to see that from this
method of calculation an implicit equation follows, that in general cannot be
solved in a closed form, but by iteration only.

Two sources of uncertainty contribute to the uncertainty of the measurand: the
uncertainty of the indication and the uncertainty of the conversion factor,
which converts the indication into the value of the measurand. However, in the
methods of calculation of the decision threshold and the detection limit the

two uncertainties do not play equivalent roles; therefore, by separating both
sources of uncertainty and treating them differently, expressions can be
derived that can be used for calculating the detection limit instead of the
iteration process. The calculation can be divided into two steps: in the first
step the indication corresponding to the detection limit is calculated and in the
second the detection limit itself is calculated. To do this, from the uncertainty
of the indication as a function of its value, approximate expressions can be
derived that make it possible to express the detection limit in an explicit,
although approximate, form. The method is validated by applying it to two
cases where the detection limit can be expressed in an exact explicit form by
comparing the approximate results with the results obtained from exact
expressions: for the case when the uncertainty of the indication does not
depend on its value and for the case elaborated by Currie (Currie, 1968).

METHODS

The standard ISO 11929 defines the detection limit as

y# = k1-α·u(0) + k1-β·u(y#) (1)

where y# denotes the detection limit, u(0) is the null measurement uncertainty, 
u(y#) is the uncertainty of the measurand at the detection limit and k1-α and 
k1-β are the quantiles of the standardized normal distribution corresponding to
the predefined probabilities α and β for making errors of type-I and type-II
respectively.

In radiation measurements the measuring function is (ISO 2010)

y = w·nn (2)

where nn is the net indication, i.e., the part of the indication originating in the
measurand, and w denotes the conversion factor converting the net indication
into the observed value of the measurand. Therefore a relation among the
indications, equivalent to Eq. (1) follows

nn
# = k1-α·u(nn=0) + k1-β’·u(nn

#) (3)

where nn
# and u(nn=0) are the indications corresponding to the detection limit 

and the null measurement uncertainty of the indication, respectively. It is easy 
to see that k1-β’ is given by

k1-β’
2 = k1-β

2·[1 + urel(w)2·nn
#2/u(nn

#)2] , (4)

where urel(w) denotes the relative uncertainty of w. This quantile corresponds
to the probability β’ of the indication, which takes into account the uncertainty
of the conversion factor and in Eq. (3) replaces the quantile corresponding to
the predefined probability β. It is clear that Eq. (4) presents an implicit
equation for k1-β’, since the relative uncertainty u(nn

#)/nn
# depends on it.

Consequently, the application of Eq. (4) and the expression for u(nn
#) as a

function of n# represents an approximative method for calculating the

detection limit of the indication, as an alternative to the method using iteration.

EXAMPLES

The simplest case for applying the method occurs when k1-α = k1-β and the

uncertainty of the background indication dominates the uncertainty budget of
the net indication, therefore u(nn

#) = u(nn=0). Then the detection limit
assumes the well-known expression

(5)

To illustrate the method on a more complex example, the case considered
by Currie (Currie, 1968), where the uncertainty of the indication given by

(6)

is presented. For this case the exact solution for the detection limit exists,
therefore the detection limits calculated by solving the Eq. (4) and
calculating nn

# can be compared with exact values. In the comparison it is

supposed that the background is 102 counts and that the factor converting
the net counts registered during the acquisition time to the measurand is w =
10-2 s-1. The decision threshold is calculated for a probability of 1 % for
making type-I errors i.e., k1-α = 3.47. The detection limit is calculated
supposing a probability of 5 % for making errors of type-II, i.e., k1-β = 1.65.
The uncertainty of the background is u(nB) =10; therefore, the null
measurement uncertainty is u(0) = 0.14. A relatively small number of
background counts and a large difference in k1-α and k1-β are used in the
example in order to increase the influence of the net indication and the
difference of the quantiles on the detection limit. The comparison is
presented on Table 1.

CONCLUSIONS

The application of the approximate method is advantageous in cases when

the exact expression for the detection limit is not known or the iteration is
difficult to apply. This occurs when u(nn=0) is obtained e. g. with the method
of least squares by fitting a spectral region. Then, in successive
approximations the uncertainties u(nn

#
i) are obtained by the method of least

squares as well. To perform the calculation, the number of counts in the i-th
step of the iteration corresponding to the detection limit, nn

#
i, representing

the response of the detection system to the measured quantity having the
value corresponding to the detection limit, has to be inserted into the
spectral region. Since the uncertainty of the nn

#
i counts depends on the

spectral shape, additional suppositions have to be used in order to define
how the additional nn

#
i counts are distributed over the spectral region.
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Table 1: The exact values of the detection limits, the values of the quantile k1-β’

and the approximate values of the detection limit, obtained from Eq. (4) 
followed by calculating nn

#

y =
 y*

-k  u (w)

#

- rel
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b
⋅

u n u n nn n n( ) ( )# #2 20= = +

u(w)/w y# , exact / s-1 k1-β’ y# , by Eq. (4) / s-1

0.02 0.765 1.651 0.765

0.05 0.772 1.686 0.772

0.10 0.795 1.810 0.795

0.20 0.898 2.349 0.896

0.40 1.569 6.132 1.630


